A Look at Nanotechnology Innovations – Nanobots in Your Future?

feynman-answers-which-cant-be-questioned

Picture Credit: withouthonor.com

The nanotechnology industry is fairly young in the post 60s computer age – many trace the foundation to the seminal work of Richard Feynman, “There’s Plenty of Room at the Bottom,” which contemplated min1aturized machines, advanced encoding and other incorporated disruptive technologies. Feynman’s talk at the 1959 American Physical Society in 1959 stunned engineers who were just beginning to see processing speed advances in electronics- there was a lot of work to do as he detailed here. On the 50th anniversary of his lecture, Nature Nanotechnology (Vol 4, 781) called it “a manifesto for physicists to take control of both the physical and biological sciences.”

Chris Toumey has probably done more than anyone to analyse the true impact of ‘Plenty of room’ on the development of nanotechnology by revealing, among other things, that it was only cited seven times in the first two decades after it was first published in the Caltech magazine Engineering and Science in 1960 (ref. 5). However, as nanotechnology emerged as a major area of research following the invention of the scanning tunnelling microscope in 1981, and culminating in the famous IBM paper of 1991, “it needed an authoritative account of its origin,” writes Toumey on page 783. “Pointing back to Feynman’s lecture would give nanotechnology an early date of birth and it would connect nanotechnology to the genius, the personality and the eloquence of Richard P. Feynman.” Feynman devoted a significant part of ‘Plenty of room’ to electron microscopy, stressing the breakthroughs that would be possible in many areas of science if it were possible to “just look at the thing!” As Michael Segal reports on page 786, the latest generation of electron microscopes are capable of resolutions of 0.5 Å.

Tourney notes that Feynman’s lecture preceded numerous crucial events that made nanotechnology possible, including the invention of the scanning tunneling microscope, the atomic force microscope, and the Eigler-Schweizer experiment of precisely manipulating thirty-five xenon atoms. Those inventions and other events led to nanolithography, computers with nanoscale components, the precise control of individual atoms, and other developments Feynman called for. Tourney points out that it was K. Eric Drexler [Molecular Engineering, Drexler 1981] who “popularized” nanotechnology in 1980s to get scientists from multiple disciplines to collaborate; “Drexler insists that the core of Feynman‟s vision is large-scale precision manipulation and combination of atoms and molecules (now called molecular manufacturing), and he says that he himself continues the rightful essence of Feynman‟s vision” (Techne, 12:3, Fall 2008). Drexler’s 1986 book Engines of Creation: The Coming Era of Nanotechnology (available on Amazon) led to the big advances as it posited a future of self-replicating nano-machines. So thirty years on, what is the state of the nanotechnology industry?

nanotech-breakthroughs

Source & Picture Credit: QMED  –

Published in MPMN, March/April 2014, Volume 30, No. 2

MPMN has a great survey from a couple of years back and, again, it points to some really interesting areas for IAI to investigate going forward.

  1. Nanotech Meets Contact Lenses and Virtual Reality

    Nanotech could end up providing a solution to the need for bulky headsets in virtual reality environments, and the answer involves contact lenses.

    nanotechnology based contact lensesBellevue, WA–based Innovega with its iOptik platform embedded a center filter and display lens at the center of a contact lens. The optical elements are smaller than the eye’s pupil and therefore do not interfere with vision. A projector can hit those tiny optical elements, which guide images to the retina. But the retina is still getting the overall normal vision provided through the entire pupil, so the brain ends up viewing the projected images and the overall normal field of vision as one. The company says their “iOptik platform provides wearers a ‘virtual canvas’ on which any media can be viewed or application run. The prototypes will feature up to six times the number of pixels and 46 times the screen size of mobile products that rely on designs limited by conventional optics.” Those optics are said to deliver games, simulator environments, and movies that are truly “immersive” and “mimic IMAX performance.” The iOptik will be regulated in the United States as a Class II medical device, as normal contact lenses are. Google is rumored to be developing a medical device. Could it be a next generation of Google Glass that uses nanotech in contact lenses?

  2. A Nanotech Detector for Heart Attacks

    Nanosensors that detect heart attacks before they happen could save both lives and money. That is exactly what Eric Topol, MD, at San Diego–based Scripps Health has been working on with Axel Scherer, PhD, of Caltech. Their technology involves tiny blood stream nanosensor chips that might sense the precursor of a heart attack. A person with such a tiny chip might get a warning on their smartphone or other wireless device that they should immediately see their cardiologist. The latest versions of the chip measure 90 microns—much smaller than a grain of sand. A doctor or nurse might inject the nanosensor into a patient’s arm, where it would flow down to the distal tip of the finger and embed itself, screening the blood for endothelial cells that are sloughed off an artery wall in a precursory period preceding a heart attack. The sensors are now being used for glucose detection in animal studies. Human trials should follow thereafter. The combination of a nanosensor and coupled smartphone could be used be used to track autoimmune disease and cancer. It could also be used to screen for rejection in patients with organ transplants. In this application, the nanosensor could be calibrated to detect the donor organ DNA in the blood, which would begin showing up in the blood as an early sign of rejection.

  3. Dragonfly-Inspired Black Silicon Fights Off Bacteria

    Wandering Percher dragonflyAn array of antibiotic surfaces can be found in the natural world, inspiring scientists to develop man-made versions of them. A recent example of this trend can be found in research from Australian and Spanish scientists who have developed a nanomaterial out of black silicon with tiny spikes on its surface. The surface geometry of the material is similar to that of the wings of an Australian dragonfly known as the “wandering percher,” whose wings have tiny spikes that inhibit bacterial growth. In the lab, the scientists confirmed that the black silicon material proved to be effective against an array of Gram-negative and Gram-positive bacteria as well as endospores. The researchers report that the breakthrough is the first “physical bactericidal activity of [black silicon] or indeed for any hydrophilic surface.”

  4. Tiny 3-D Printed Batteries

    Nano batteriesResearchers at Harvard University and the University of Illinois at Urbana-Champaign announced last year that they have figured out how to 3-D print miniature batteries about 1 mm across. The researchers, led by Jennifer A. Lewis, PhD, Harvard School of Engineering and Applied Sciences, created and tested materials, or “inks,” able to function as electrochemically active materials. The materials also had to harden into layers in just the right way so they could be stacked up in layers during the 3-D printing—creating working anodes and cathodes. The recipe includes ink for the anode with nanoparticles of one lithium metal oxide compound, and an ink for the cathode from “nanoparticles of another.” The printer lays the ink onto the teeth of two gold combs to create a tightly interlaced stack of anodes and cathodes. The whole setup gets packaged into a tiny container and filled it with an electrolyte solution to complete the battery. Tiny batteries could be game-changing for the medical device industry, finding use in applications such as biomedical sensors and skin-based monitoring devices. In addition, they could be embedded into plastic housing of devices such as hearing aids. Narayan says that he and his team are exploring the limits of 3-D printing. “Using a 3-D printing technique known as two-photon polymerization, we have created small-scale medical devices such as drug delivery devices and biosensors.” They have also developed a biocompatible riboflavin-containing photoinitiator for two-photon polymerization of tissue engineering scaffolds. Two-photon polymerization uses lasers shining two different-wavelength beams on a sensitive material. Where the beams intersect, the material is polymerized. Then residual material can be washed out. Narayan continues, “I think that more biocompatible materials for 3-D printing, particularly for processes like stereolithography, microstereolithography, and two-photon polymerization, will facilitate wider use of these technologies for commercial production of medical devices.”

  5. Revolutionizing Eye Surgery

    Scientists at the Multi-Scale Robotics Lab at ETH Zürich have developed a tiny magnetically-guided microbot designed to be embedded in the eye to perform precision surgery or to deploy precise amounts of drugs. The researchers demonstrated the viability of the technology in tests on rabbits. The robots used in the procedure has a diameter of 285 µm. The magnetic microbots are powered using external magnetic fields. Known as the OctoMag, the robots can produce magnetic forces and torques in three dimensions. The robot is so small that it could be used to help dissolve clots in the vessels of the eye. The size of autonomous microrobots has been historically limited by motors and propulsion devices. The OctoMag gets around this requirement by using an external magnetic control system that can guide a needle-injected device into the eye, eliminating the need to slice the eye open. On a closer horizon, Folk says, “There’s a great company called Replenish Inc. [Pasadena, CA] that has an implantable micropump. You place it right behind the eye, and it releases this drug over time. And what’s incredible about their technology is they’ve integrated sensor, pump, and wireless technology, all in something about the size of 2 quarters stacked up. They’ve already done their first in man – they placed it behind the eye, and they released the drugs over time.”

  6. Superflexible Chips that Can Encircle a Strand of Hair

    Electronics wrapped around hair strandsSwiss scientists have created nanotech-based electronic chips that are so flexible they can be wrapped around a hair strand. Based at ETH Zürich, the researchers were able to accomplish this feat by creating thin layers of stacked polyvinyl that is topped with an electronic circuit. When submerged in water, two of the polyvinyl layers dissolve, leaving a tiny circuit embedded on a sheet of parylene that is one micrometer thick. The researchers found that the transistors still function when wrapped around a human hair. The flexible electronics can adhere to a range of materials. Potentially suited for wearables and a whole range of medical applications, the chip has already been used in an artificial eye and in a glaucoma monitor. Folk says, “The whole wearables space, you know, FDA’s offered some good and clear guidance on phone apps. Where we are right now, wearables are generally a combination of accelerometers, gyroscopes and compasses. This is current technology; a lot of it is determined by the price point. There’s actually a lot more that you can do, in terms of measuring things in a lot more sensitive fashion, but we’re waiting for the price point to come down.”
    Creating Biodegradable Electrodes

    Carnegie Mellon University’s Chris Bettinger and Jay Whitacre found that cuttlefish ink provides just the right chemistry and nanostructure to power tiny, ingested electronic devices.

    nano cuttlefishBettinger, an assistant professor of materials science and biomedical engineering, and Whitacre, an associate professor of materials science and engineering, have been pioneers when it comes to finding battery substances that could be digested, allowing for the powering of medical devices that might also be eaten. They reported some success creating edible power sources using materials found in a daily diet, but still needed to find the optimal pigment-based anodes to include in their edible sodium-ion batteries. They ended up finding out that naturally occurring melanins derived from cuttlefish ink exhibit higher charge storage capacity compared to other synthetic melanin derivatives when used as anode materials. But not everything swallowed by a patient needs to be digestible. “You know, anybody who’s ever taken a drug in their life probably hasn’t adhered exactly to what the prescription says, or what the doctor says, so adherence is a very big issue in the industry,” Folk says. “Proteus Digital Health [Redwood City, CA] is a very interesting company. They’ve got a pill with a power supply, a sensor, and a transmitter. And when you swallow the pill, your stomach acid kicks off the battery and initiates a signal. That indicates that you’ve actually taken the drug.”

  7. Nanotech Cancer AppsNanoparticles have proved useful for delivering cancer-killing therapies. Cornell University scientists, for example, were able to get tiny particles of gold alloy into the bloodstream and to cancer cells, where it can be heated up to kill them. The Cornell scientists chose gold — No. 79 on the Periodic Table — because of the ease in which it absorbs infrared heat. The researchers figured out how to attach the gold to colorectal-cancer-cell-seeking antibodies that delivered the gold to the cancer. Meanwhile, MIT chemical engineers have designed nanoparticles that carry the cancer drug doxorubicin, as well as short strands of RNA that can shut off one of the genes that cancer cells use to escape the drug. The MIT researchers were searching for ways to treat an especially aggressive form of breast cancer.
  8. Silver Germ-Killers

    Silver nanoparticles are increasingly being used in everything from self-sanitizing toothbrushes to clothes. It may eventually be used in toothpaste. The ability of tiny particles of silver to kill bacteria has been known for some time, though the research appears to be light on whether the silver also carries health risks. CBC/Radio-Canada reports that the Washington, D.C.–based Wilson Center counts around 400 products presently using silver nanoparticles.

  9. Nanotech-Enabled Breathalyzer for Diabetics

    Researchers at Western New England University have developed a nanotech-powered breathalyzer prototype that can detect acetone levels in the breath, which is theorized to correlate to blood glucose levels. The technology, if commercialized, could do away with need for finger-prick–based testing of blood sugar.

    nano-fueled breathalyzer for detecting blood glucoseThe ability to detect acetone in the breath is derived from acetone-sensitive nanometer-thick polymeric films. Exposure to acetone causes the two polymers in the films to crosslink, changing its physicochemical nature. The Western New England University researchers’ breathalyzer design is initially the size of a book.  Scientists from the Technische Universität Dresden (Germany) and Fraunhofer Electron Beam and Plasma Technology FEP are actually working on a breath-analyzing spectrometer that is so tiny it can fit into a mobile phone.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s